The Economic Value of Drip Irrigation in California

Doug Parker, UCANR: David Zilberman and Becca Taylor, UCB

University of California Agriculture and Natural Resources California Institute for Water Resources

- California has long been threatened by chronic water shortages
- 1965-1975: Early Development and Adoption: UCCE San Diego
 - Don Gustafson Avocados
 - Bernarr Hall Strawberries & Vegetables
- 1975-87: Technical Problems and Reputation Effects
- 1976-77: Drought, Drip acreage more than doubles
- 1980: CSU Fresno Center for Irritation Technology
- 1982: California Irrigation Management Irrigation System CIMIS

- 1985: Drip as partial solution to drainage problems
- 1987-91: Drought, Drip acreage doubles, more low value crops
- 2003: Drip Irrigation Salinity Management for Row Crops
- 2004+: Spreading fast in developing countries

- Drip as a land quality augmenting technology
 - Drip increasing water use efficiency (Caswell & Zilberman 1985, 1986).
- Drip improves timing of application of water
 - Increase yields, reduce drainage, may save water at field level (Shani et al 2009; Kan et al 2002; Caswell et al 1990).
 - Adopted on lower quality land first, such as steep hills and sandy soil (Schoengold & Zilberman 2007).
 - Distinguish between extensive and intensive margin effect (Shah et al. 1995).
- Profitability was a key factor explaining diffusion of drip in Israel
 - Weather was a source of heterogeneity affecting timing of diffusion (*Fishelson and Rymon 1989*).
 - Dinar and Yaron (1992) identify sequences of transition from less advanced to more advanced technologies—influenced by yield effects, water-savings and subsidies.
- In Spain, adoption of drip started in perennial crops and moved to annuals
 - Adoption probability increased with water scarcity, credit availability, education, and access to information (Alcon et al. 2011).
- Adoption of drip in Crete and Greece
 - Profitability, production risk, and water shortage contribute to adoption in Crete (Koundouri et al. 2006).
 - Better access to information from informal and formal sources enhances likelihood of adoption. Formal and informal
 information sources are complementary (*Genius et al. 2014*).

(a) 1975 Drip Irrigation (% of Irrigated Acres) (b) 2001 Drip Irrigation (% of Irrigated Acres (c) 2010 Drip Irrigation (% of Irrigated Acres)

Source: Highstreet et al. (1980); CDWR Irrigation Survey, 2001 & 2010.

University of California

Tindula et al. (2013). Survey of Irrigation methods in California in 2010

University of California

2001 Vines in Drip (% of Irrigated Acres)

2010 Vines in Drip (% of Irrigated Acres)

Source: CDWR Irrigation Survey, 2001 & 2010.

University of California

2001 Trees (other) in Drip (% of Irrigated Acres)

2010 Trees (other) in Drip (% of Irrigated Acres)

Source: CDWR Irrigation Survey, 2001 & 2010.

University of California

2001 Truck Crops (other) in Drip (% of Irrigated Acres)

2010 Truck Crops (other) in Drip (% of Irrigated Acres)

Source: CDWR Irrigation Survey, 2001 & 2010.

University of California

2001 Process Tomato in Drip (% of Irrigated Acres)

2010 Process Tomato in Drip (% of Irrigated Acres)

Source: CDWR Irrigation Survey, 2001 & 2010.

University of California

Processing Tomatoes

Processing Tomatoes 1990 - Present

- **Decreased Water Use**
- **Reduced Acreage**
- Increased Yield and Quality
- **Increased Production**

University of California

Processing Tomatoes

University of California

(e) Water Cost by Acre (\$/acre-foot), 2001 (d) % Crop Acreage that is High Value, 2001 Drip Irrigation (% of Irrigated Acres)

Source: Highstreet et al. (1980); CDWR Irrigation Survey, 2001 & 2010. Source: CDWR Bulletin 132; CDWR Irrigation Survey, 2001 & 2010.

University of California

- Agronomists found that the introduction of drip failed in many countries, despite its successes in Israel and US.
- They attributed the successes to the:
 - Co-evolution of the drip technology and other agronomical practices.
 - Introduction of a network to support the technology and its adoption.

- Netafim analyze 112 studies of drip irrigation versus flood irrigation.
 - Find yield effects range from 18-50% (Durand and Birrell, 2010).
- We compare 31 published studies across 15 crops:
 - Half of the studies report no statistically significant difference in yields.
 - Half of studies report significant and positive yield effects, ranging from 12-66%.
 - Average yield effect across all studies is 16%.
- 11 out of 31 studies also report positive water-savings effects
 - 35% on average for the 11 studies

Agronomic Studies of Drip

Crop	Paper	Location	Yield Effect	Comparison
Alfalfa	Bui & Osgood, 1990	Hawaii	-	sprinkler
Alfalfa	Hutmacher et al., 1992	California	19-35%	furrow
Cabbage	Bucks et al., 1974	Arizona	-	furrow
Cabbage	Rubeiz et al., 1989	Arizona	29%	furrow
Cabbage	Tiwari et al., 2002	India	62%	furrow
Cantaloupe	Bucks et al., 1981	Arizona	-	furrow
Carrot	Bucks et al., 1981	Arizona	-	furrow
Cotton	Howell et al., 1987	California	-	furrow
Cotton	Phene et al., 1992	California	13%	furrow
Cotton	DeTar et al., 1994	California	-	furrow
Cotton	Henggeler, 1995	Texas	20%	furrow
Cotton	Muhammad et al., 2011	India	20%	furrow
Lettuce	Sammis, 1980	New Mexico	-	furrow
Lettuce	Hanson et al., 1997	California	-	furrow
Okra	Sivanappan et al., 1987	India	40%	furrow
Onion	Bucks et al., 1981	Arizona	-	furrow
Onion	Halvorson et al., 2008	Colorado	15%	furrow
Peanut	Adamsen, 1989	Virginia	14%	sprinkler
Pepper	Xie et al., 1999	New Mexico	43-66%	furrow
Pepper	Paul et al., 2013	India	28%	flood
Pistacchio	Goldhamer et al., 2002	California	13%	flood
Potato	Sammis, 1980	New Mexico	-	furrow
Potato	DeTar et al., 1996	California	27%	sprinkler
Potato	Erdem et al., 2006	Turkey	-	furrow
Sweet corn	Phene & Beale, 1976	South Carolina	12-14%	furrow, sprinkler
Sweet corn	Wendt et al., 1977	Texas	-	furrow
Sweet corn	Adamsen, 1992	Virginia	-	sprinkler
Tomato	Schweers & Grimes, 1976	California	14%	furrow
Tomato	Rose et al., 1982	California	20%	furrow
Tomato	Pruitt et al., 1984	California	13-19%	furrow
Tomato	Bogle et al., 1989	Texas	22%	furrow
Tomato	Yohannes & Tadesse, 1998	Ethiopia	39-54%	furrow
Tomato	Hanson & May, 2003	California	15-35%	sprinkler
Tomato	Semiz & Yurtseven, 2010	Turkey	14-27%	furrow
Zucchini	Rubeiz et al., 1989	Arizona	13%	furrow

University of California Agriculture and Natural Resources California Institute for Water Resources

Value of Water Savings from Drip Irrigation				
(annually)				
	Value of Annual Water			
Cost of Water	Savings from Drip			
(\$/acre-foot)	Irrigation (millions)			
\$80	\$128			
\$150	\$240			
\$220	\$352			

Assumptions: Agricultural Water Use is 33.32 MAF/Year Percentage of Irrigated Crops Adopting Drip is 40% Percentage of Agricultural Water Saved from Adopting Drip is 12%

Increase in Farm Income from Drip			
Irrigation (annually)			
	Increase in Farm		
Yield Effect of	Income from the Yield		
Drip Irrigation	Effect (millions of \$)		
5%	\$185		
15%	\$508		
25%	\$778		

Assumptions: Net Farm Income in Crop Production is \$7.2 billion Percentage of Irrigated Crops Adopting Drip is 40% Percentage of Agricultural Crop Value from High-Value Crops is 86%

Combined Value of Drip = \$313 to \$1,130 million per year

- Pesticides and fertilizer use reduction not measured
- Consumer surplus not measured
- Not included are extensive margin effects- land expansion because of drip
 - Grapes, avocado in foothills, almonds on slopes...

Thank You

University of California