Improving the Efficiency of Surface Irrigation Systems in California

Khaled M. Bali <u>kmbali@ucanr.edu</u> Irrigation Water Management Specialist UC Kearney Agricultural Research and Extension Center Parlier, CA

Irrigation: Controlled amount of water is applied to plants at specific intervals

Irrigation Methods:

- 1- Surface irrigation (flood or gravity):
 - Border strip (flat) irrigation (slope 0.1-0.2%)
 - Furrow irrigation (slope)
 - Basin irrigation (zero slope)
- 2- Sprinkler Irrigation (various types)
- **3- Drip Irrigation (various types)**
 - Surface drip
 - Subsurface drip

Surface (flood) irrigation:

- Water application methods where water is applied over the soil surface by gravity (no energy is needed).

- Most common irrigation system throughout the world
- High efficiency possible on medium and heavy soils
- Mostly for field crops in California

Reduction in field crops in CA from 3,805,800 acres in 2006 to 2,639,200 acres in 2015 (-30%)

System	Eff. _{APP}	
Surface	70-85%	
Drip	85-90%	
Micro-sprinkler	80-90%	
Sprinkler	70-90%	

2013 Fraction of irrigated land totally or partially irrigated with gravity methods in western states.

Source: USDA Farm and Ranch Irrigation Survey -FRIS, 2013

University of California

Agriculture and Natural Resources Cooperative Extension

How Much Water do I need to Apply?

- Need to know crop water use (ETc) since last irrigation
- ETc from (Reference evapotranspiration and crop coefficient)
- Typical application rates (vary widely depending on soil type, etc):
- Surface: ~ 3-5 in/irrigation (much higher rate for light soils)
- Sprinkler: ~ 0.5-1.2 in/irrigation
- Drip: ~ 0.5 in/irrigation
- Delivery system designed for surface irrigation

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Improving Irrigation System Efficiency

- Reduce losses (nutrients, pesticides, water)
- Limited water supplies and increased demands
- Labor cost (minimum wage in CA from \$10.5 to \$15/hr by 2022)
- What is efficiency?
 - Distribution system efficiency (district level, canals, reservoirs, etc.)
 - On farm or field application efficiency (AE) , distribution uniformity (DU), and other parameters

Surface Irrigation

Applied water = Root zone storage + runoff + deep percolation

On-Farm Water Conservation =Higher Application Efficiency (AE)

IRRIGATION = Root zone storage (ETc) + DEEP PERCOLATION + Runoff

A + B + C Application Efficiency (AE)= A/(A+B+C)

To achieve higher efficiency, reduce B and/or C

BUT

Need to have a balance, Deep Percolation sometimes is needed for salinity control (700 ppm ~ 0.96 tons of salt/ac-ft but NOT with every irrigation) Runoff is needed for Uniformity (100% AE means under irrigation)

On-Farm Water Conservation =Higher Application Efficiency (AE)

IRRIGATION = Root zone storage (ETc) + DEEP PERCOLATION + Runoff

A + B + C Application Efficiency (AE)= A/(A+B+C) Deep Percolation Ratio= B/(A+B+C) Runoff Ratio= C/(A+B+C)

Irrigation Water Requirements (IR) IR= Crop ET/AE

Distribution Uniformity (DU)

DU= Average depth in low quarter/Average depth infiltrated

Many other efficiency parameters BUT

KEEP IT SIMPLE, AE and DU are all you need

Field Crops

Mostly surface irrigation methods:

- Border (flat) irrigation

Runoff rate: 5-20% (vary)

- Furrow (bed) irrigation Runoff rate: 15-30% (vary)

Surface runoff:

Nutrient losses: surface runoff & deep percolation

Pesticides losses: mostly surface runoff &

some with deep percolation

* Usually no runoff with basin irrigation

Field A (Alfalfa, Border, UCDREC)

Field B (Alfalfa, Furrow, UCDREC)

Surface Irrigation (uniform soil?)

Applied water = Root zone storage (A) + runoff (B) + deep percolation (C)

Final infiltration profile and irrigation performance measures Application Efficiency (AE) and Distribution Uniformity (DU)

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Flow rate (cfs) and total applied water

Advance and Recession Curves

(also other parameters are need for system evaluation, flow rates, slope, n, soil type, etc)

UC CE University of California Agriculture and Natural Resources Cooperative Extension

Tools to Improve Efficiency

- Increasing check flow rate (to increase advance rate, avoid erosion, time of the year)
- Reducing field length: to improve DU and reduce DP (good option for light soils, not effective on heavy ground)
- Tailwater recovery systems: to reduce RO (good option for heavy soils, not effective for light soils)
- Selecting an appropriate irrigation water cutoff time (good option for heavy soils to reduce or eliminate runoff)
- Automation of surface irrigation

Tools to Improve Efficiency

- Evaluation of current irrigation system (AE and DU)
- Inflow rate, outflow rates (runoff and tile water)
- Advance rate (and recession rate)
- WinSRFR (surface irrigation design and simulation model)

🐄 WinSRFR 4.1.3 Project Management - Barley 4-02-10.srfr (Farm: Farm 1) – 🗖 🗙				
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>H</u> elp				
Farm: Farm 1, Field: Field1				
Analysis Explorer		Win CDED Worlds		
Em Farm: Farm 1	^	WINSKER WORKS		
Event Folder 1				
Simulation 1		Event		
🖃 🧰 Design: Folder 1		Analysis	Simulation	
Double-Click here to start Design Analysis		<u></u>		
Derations: Folder 1				
Simulation 1				
\square Simulation 1 (2)				
t50=32 B=40		Physical	Operations	
🕂 t100=28 min		Design	Analysis	
🕂 tc = 30 min b = 30 mm/h				
tc = 30 min b = 50 mm/h				
Details Forms Form 1	<u> </u>	Press button to enter WinSRFR World		
Details - Farm I				
ID Notes				
		USDA		
Name: Farm 1				
Created: Eri Apr 02 2010 3:25 PM				
Owner: Owner: Owner:				
		User Level: Advanced	3:31 PM	

Tools to Improve Efficiency

Reducing field length: to improve DU and reduce DP (good option for light soils, not effective on heavy ground)

1275 ft, 2 valves, 21.4 cfs 6.1 inches applied

Irrigation management – applying the right amount of water

Tailwater Recovery Systems

- For water conservation
- Improving the quality of drainage water (TMDL)

Automation of Surface Irrigation Systems

- Need more emphasis on evaluation of surface irrigation systems
- Room for improvement but you cannot improve what you do not measure
- New tools to analyze and improve the design and management of surface irrigation (technology, modeling, automation)
- Higher efficiency is possible at a reasonable cost
- Higher labor costs will be a key factor in increasing efficiency

Thank You