

State of Israel Ministry of Agriculture & Rural Development

Agriculture in Israel Where R&D Meets Nation Needs

Itzhak Ben-David

Deputy Director General (Foreign Trade), Sacramento (CA)., May 25, 2017

Basic Facts about Israel

Population: 8,309,400

Area: 22,000 km²

GDP Agriculture **12.6 Billion NIS - 1.4%**

Employment in Agriculture about 40,000 - 1.2%

> **Agro-food Exports** 2.4 Billion NIS - 3.7%

Agro-food Import 5.3 Billion NIS - 7.3%

Main constraints on Israeli Ag. sector

Israel's small land area is divided into 4 distinct climate zones

- Shortage of natural water resources \bigcirc
- **Scarcity of precipitation** \bigcirc
- Two thirds of Israel area is defined as semiarid or arid
- Shortage of "On farm labor" \bigcirc
- **Complex geopolitical environment** \bigcirc
- **Distance from the export & import markets** \bigcirc

Additional constraints Support of Agriculture in Israel

Low level of support for farmers, Compared to other developed countries

Decline of support levels over time

Research, Economy and Strategy Division - Ministry of Agriculture and Rural Development

Producer Support Estimates by Country

(% of gross farm receipts)

But ...

Israeli Agriculture R&D and Investment (From OECD report on the Israeli Agriculture)

- The Agriculture sector has benefited from high levels of investment in \bigcirc research and development, well developed education systems and high performing extension serviced
- Israel is a world leader in many aspects of agricultural technology, particularly those associated with farming in arid conditions
- Agriculture relies not so much on a "natural" comparative advantage in farming, but on an "induced" comparative advantage built on technological progress and innovation
- Israel has implemented an advanced water pricing policy and has encouraged innovation in water-related technologies

Solutions: Israel as a Global Agro-Tech Center

- Global leader in Agro-Technologies (especially arid areas) and water systems
- Multidisciplinary R&D with proven abilities in developing Agriculture know-how
- Among highest ranking in Agriculture yields
- A global leader in high-tech and information & For communication technologies (ICT) for tomorrow's agriculture
- Israel agriculture is a worldwide "beta site"
- Knowledge and experience in introducing, together with mega-companies, new products and technologies into agricultural practice all over the world

Combining these will place Israel as a Global Agri-Tech center

- eas) and water systems oing
- Energy Food Water

Evolution of Productivity In Agriculture & other sectors

Increasing Productivity and Efficiency

Partial Productivity Indices

(Labor, Capita, Water, 1980 = 100)

Source: Agricultural Atlas, Kislev 2013 (based on CBS data)

Key for Success

Close cooperation and interaction Promotions of advanced technologies in all agricultural sectors.

Companies

Irrigation and Water Resources Management Technologies in Israel

The global Water Challenge

Is the world going into a Water crisis?

The US government predicts that By 2025

Of the world's landmass and 40 of 50 US states will experience Water Shortages

Seth M. Siegel, Prager University Foundation (2016)

Water Consumption in Israel

According to sectors, Data for 2014

Potable, 442,3 MCM, 39%

Water Resources & Water Demand

- Average total natural enrichment 1,170 Billion m³/year!!
- Overall water demand 2,2 Billion m³/year, of which:
- Current potable water demand ~ 1.2 Billion m³/year \bigcirc
- Actual Deficit 1.0 Billion m³/year
- **Forecast for potable water demand:** \bigcirc
 - 2020 ~ 1,7 Billion m³/year \bigcirc
 - 2030 ~ 1,95 Billion m³/year \bigcirc
 - 2040 ~ 2,2 Billion m³/year \bigcirc
 - 2050 ~ 2,45 Billion m³/year \bigcirc

Irrigation technologies, Purification and Recycling, Desalination

- Marginal water– saline and brackish water \bigcirc
- Waste water treatment technologies and recycling \bigcirc
- **Desalination Technologies** \bigcirc
- Water saving: improving irrigation practices, precision agriculture, \bigcirc preventing leaks, drip irrigation, public education

Water for Agriculture (1970-2015)

Agriculture Irrigation Water

- Israel produces 530MCM of treated water every year \bigcirc
- More than 80% of the water is used for irrigation \bigcirc
- Placing Israel 1st in the world in water recycling \bigcirc

Israel	Spain	Australia	Italy	Greece	Europe/USA
87%	17%	15%	8%	5%	5%

R&D - The effect of micro-pollutants in recycled water on human health and the environment The environmental impact of surfactants, pharmaceuticals, hormones and cosmetics

Bas Spector, 2011 (Knesset Reports). Onesios K. M., 2009. Yedidia I. et al., 2011.

Education!	
The key for	
sustainability	
future	

Water Technologies

Sector Highlights

- Israeli systems account for 50% of the world's lowpressure irrigation systems, reducing agricultural water consumption by 30%
- Israeli companies have installed more than 350 desalination plants in nearly 40 countries
- Among world's lowest-cost producers of desalinated water: ~ \$0.55/m3 vs \$1.00/m3 world average
- **Global opportunity only 12% of the world irrigation is** through drip irrigation

Water Management

Water Desalination

Irrigation

Urban Water Solutions

Other selected aspects of High-tech in Israeli Ag. sector

Precision Agriculture

Thermal imaging for water status mapping

Thermal imaging exposes differences in water status of plants which cannot be detected by our eyes

Nectarines excessively irrigated

Statistical and states

Vineyards regular irrigation

Stand State of the

Ling The West and

Vineyards regular irrigation Vineyards over irrigation

Vineyards – Yiftan, Israel

Innovation / Sophistication in Postharvest Practices in Israel

New technology

New storage technology

Sophisticated produce

- FAO estimates that each year approximately
 - one-third of all food produced for human
- consumption in the world is either lost or wasted

or human

Postharvest Technologies

- Prolonged storage and extended shelf life
- Modified atmosphere packaging (biodegradable materials)
- Environment-friendly technologies (non-chemical): hot water rinsing and brushing
 - **Biocontrol agents against** pathogens
- Long vase life of ornamentals

Grain Storage Aim To prevent quantity and quality loss of stored grain

As a result of efficient monitoring, intensive R&D of innovative methodologies and technologies, grain losses in Israel do not reach levels higher than 0.5%.

Such levels are regarded as a

notable international

achievement

Israeli Dairy Farming

Facts about the Israeli Dairy Herd

- **124,000 dairy cows** **
- 90% are herd book registered (monthly recorded)
- Breed: Israeli Holstein; 100% AI
- 100% mechanically milked; Milk equipment is mostly ••• locally made (SAE Afikim; SCR)
- **2 types of farms:** •••
 - Big farms, 300-900 cows, (Kibbutz farms); 3X
 - Smaller family farms, 40-200 cows (Moshav farms); 2-3X
- Annual production: 12,000 liter/cow.
- ✤ 3,75% Fat
- **3,37%** Protein

Key factors for the success of the Israeli Dairy sector

Genetics Management Nutrition

Average per farm — Farms

Source: Israeli Dairy Marketing Board

The Israeli "High-tech" cow

- ✤ Milk yields
- Fat, protein and lactose percentages
- Body weight
- ***** Feed intake
- ***** Activity
- ✤ Lying time
- Rumination time

Feeding centers

Advantages of the Feeding centers

- ***** Few and efficient machinery.
- **Cooperation between centers.**
- Extensive use of byproducts and others additives.
- **Computation and exact control.**
- Size advantages while buying foodstuff.
- High variety of energy and protein sources.
- Different treatments of whole grains.
- Long range storage (cottonseeds, silage, hay).
- Low depreciation and waste (proper storage equipment).
- Distance between stores to avoid fire.

Fishery

an Abrea

Current Challenges and Future Perspectives in Mariculture Research

Dr. Hanna Rosenfeld National Center for Mariculture Israel Oceanographic and Limnological Research

Mandate:

To develop a branch of agriculture that utilizes seawater & brackish water for culture of high quality marine organisms & establish an associated biotechnology

Mode of activity

Mari culture R&D

Mari culture production

Off-shore cage farming 12 km offshore, 12m wave height

Domestication of high value species

White grouper

Blue fin Tuna

Mullet (Mugil Cepalus)

Extensive & Intensive Aquaculture

Recirculating Aquaculture Systems (80-100 kg/m³) also for marine species

WATEC Israel 2017 September 12-14, 2017 Water Technology and Environment Control Exhibition & Conference

f

y

Μ

in

HOME **GENERAL INFORMATION**

EXHIBITION & SPONSORSHIP

CONFERENCE & FIELD TOURS

Agritech 2018

The 20th International Agricultural Exhibition & Conference May 8 - 10, 2018, Tel-Aviv, Israel

May 8 – 10, 2018, Tel-Aviv, Israel International Agro Technology Exhibition & Conference

Agri is our Culture From Biblical Times to Nowadays

